Wide Stencil Finite Difference Schemes for the Elliptic Monge-ampère Equation and Functions of the Eigenvalues of the Hessian

نویسنده

  • ADAM M. OBERMAN
چکیده

Certain fully nonlinear elliptic Partial Differential Equations can be written as functions of the eigenvalues of the Hessian. These include: the Monge-Ampère equation, Pucci’s Maximal and Minimal equations, and the equation for the convex envelope. In this article we build convergent monotone finite difference schemes for the aforementioned equations. Numerical results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Mixed Finite Element Approximations of the Monge-ampère Equation in 2d

We give error estimates for a mixed finite element approximation of the two-dimensional elliptic Monge-Ampère equation with the unknowns approximated by Lagrange finite elements of degree two. The variables in the formulation are the scalar variable and the Hessian matrix.

متن کامل

Standard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Mixed Methods

We prove a convergence result for a mixed finite element method for the Monge-Ampère equation to its weak solution in the sense of Aleksandrov. The unknowns in the formulation are the scalar variable and the Hessian matrix.

متن کامل

Convergence of a Hybrid Scheme for the Elliptic Monge-ampère Equation

We prove the convergence of a hybrid discretization to the viscosity solution of the elliptic Monge-Ampère equation. The hybrid discretization uses a standard finite difference discretization in parts of the computational domain where the solution is expected to be smooth and a monotone scheme elsewhere. A motivation for the hybrid discretization is the lack of an appropriate Newton solver for ...

متن کامل

Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation

This paper introduces a numerical method for the solution of the nonlinear elliptic Monge-Ampère equation. The boundary conditions correspond to the optimal transportation of measures supported on two domains, where one of these sets is convex. The new challenge is implementing the boundary conditions, which are implicit and non-local. These boundary conditions are reformulated as a nonlinear H...

متن کامل

Local Regularity of the Complex Monge-Ampère Equation

Local Regularity of the Complex Monge-Ampère Equation Yu Wang In this thesis, we study the local regularity of the complex Monge-Ampère equation, (√ −1∂∂̄u )n = fdx where √ −1∂∂̄u stands for the complex Hessian form and dx the Lebesgue measure. The underline idea of our work is to consider this equation as a full-nonlinear equation and apply modern theory and techniques of elliptic PDEs. Our main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007